

Condition monitoring of onshore wind turbines: independent thinking

BVG Associates

Market analysis & business development

- Supply chain development
- Economic impact assessment
- Support to industrialisation

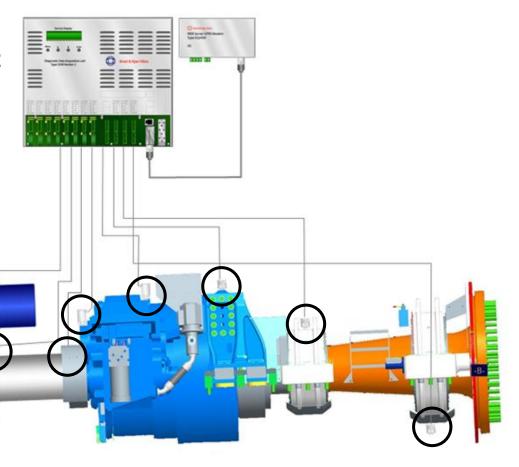
Technical innovation & engineering analysis

- Support to investment in technology
- R&D programme management
- Design and engineering services

Project implementation

- FIT project development (UK only)
- SCADA & condition monitoring
- O&M technical support

Technical education



Scope

- Recent trends
- Market situation
- Purpose and cost
- What it's good and not good at
- Typical business case
- Another way

The ideal

Condition monitoring: recent trends

- 1. Market for condition monitoring systems has not grown as fast as anticipated 5 years ago
- 2. All large wind turbine manufacturers are offering independent 'add on' systems, especially on multi-MW turbines

3. WTMs and others bringing experience from other sectors

- 4. Technical trend towards:
 - Use of more types of sensor
 - Monitoring more components
 - Analysing data from many turbines, centrally
 - Use of more wind turbine design understanding

Condition monitoring: market situation

		oerat.	dity	esi	anines	cal Accor	solicettines		of etrain
Company	System	Lew Hand	dity of	one i	the ex	dain cele	e lacholleo	80	of Merines
Areva/01db-Metravib Drivetrain	OneProD	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
Bently Nevada (GE)	WT-CMS Adapt.wind				\checkmark	\checkmark	\checkmark		\checkmark
Beran Instruments	PlantProtech			\checkmark		\checkmark	\checkmark	✓	\checkmark
Brüel & Kjær Vibro	WTAS - Type 3651	\checkmark	✓	\checkmark		\checkmark	\checkmark	✓	\checkmark \checkmark
Eickhoff	E-GOMS			\checkmark		\checkmark	\checkmark		\checkmark
Emerson Process Management	epro MMS	\checkmark				\checkmark			\checkmark
FAG	FAG WiPro	\checkmark		\checkmark		\checkmark	\checkmark	✓	\checkmark \checkmark
Gamesa	SMP-8C					\checkmark	✓		✓
Global Maintenance Technologies	E-Sentry System	✓ ✓ ✓				\checkmark			✓
Gram & Juhl	<i>TCM®</i>					\checkmark	\checkmark \checkmark	\checkmark	\checkmark \checkmark
Holroyd Instruments	AE Systems		\checkmark				\checkmark		\checkmark
IGUS ITS	BLADEcontrol ®					\checkmark		\checkmark	
Insensys	RMS				✓		\checkmark	\checkmark	
Prüfteknik Condition Monitoring	VibroWeb XP	\checkmark		\checkmark		\checkmark \checkmark			\checkmark
Rovsing Dynamics	Winergy CDS			\checkmark		\checkmark	\checkmark		\checkmark
Siemens Wind Power AS	FLENDER CM				✓		\checkmark	✓	\checkmark \checkmark
SKF	WindCon		\checkmark	\checkmark				\checkmark	\checkmark
Vatron	DriveMon Wind	\checkmark			\checkmark				✓
WindSL	WT-HUMS	✓	\checkmark	\checkmark		\checkmark	✓		✓ ✓
μ-SEN	Ω-Guard $®$		✓				✓		✓

(excludes single-sensor type systems based on acceleraometers AE, US, oil cleanliness sensing; also analytics only suppliers)

Condition monitoring: purpose & cost

Use

- Fault detection = finding problem (after failure = needs repair)
- Diagnostic = finding cause of problem
- Prognostic = predicting future failure

To

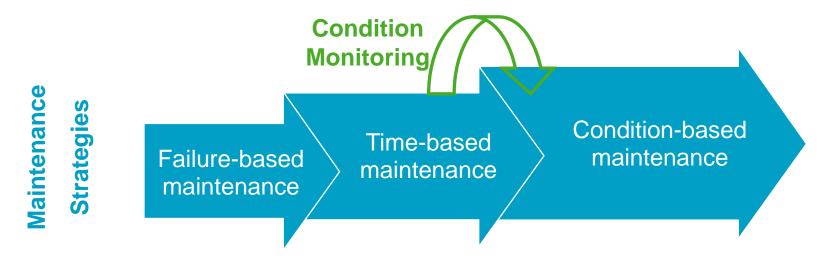
- Enable service crew to address problem:
 - Before failure (ie. minimising maintenance cost & lost revenue)
 - At planned time (eg low wind)
 - On their first visit
- Understand root cause of problem (may feed back to design)
- Minimise engineer input looking at data from multiple sites

Cost

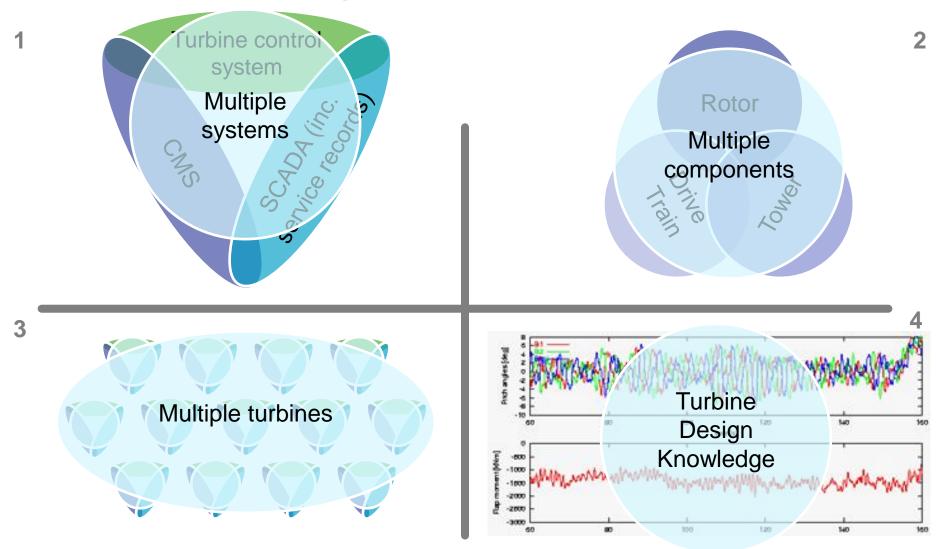
- WT controller & service crew: nothing extra
- CMS: €5-10k + €1-2k/yr

Condition monitoring: what it's good & not good at

- ✓ Bearing damage
 - Detect and prognose
 - Gearbox (especially HS stage), main bearing, generator bearings
- ✓ Gear tooth damage
 - Detect and prognose
- **✓** Abnormal operation
 - Gross yaw and pitch system defects
- Adding up fatigue life from day 1 & predicting date of failure (and are unlikely ever to do so)
- Diagnosing root cause (yet)


Condition monitoring: typical business case

- Pay €X + €Y/year
- Avoid lost revenue of €Z
- Avoid large component replacement cost of €A
 - eg set of bearings instead of complete gearbox
 - 1 service van instead of 4 vans and a crane etc.
- CMS supplier examples always look great
 - Detect the problem
 - Generic reliability data often 'old' and generic
- Customers are enjoying benefits
- Payback average 2-8 years (looks best for larger turbines & offshore)


Condition Monitoring: another way

- Think differently: combine with condition-based maintenance
 focus on the components that need it
- Challenge: Needs more technology understanding = input from WTM or ?

Condition monitoring: the ideal

