

Reducing the cost of the offshore wind projects in deeper waters: assessing the options and their implementation

Bruce Valpy,
Director
29 February 2012









#### **BVG** Associates

#### Market analysis & business development

- Supply chain development
- Economic impact assessment
- Support to industrialisation
- UK ports

#### **Technical innovation & engineering analysis**

- Support to investment in technology
- R&D programme management
- Design and engineering services

#### **Project implementation**

- SCADA & condition monitoring
- O&M technical support

#### **Technical education**





# The Crown Estate Offshore Cost Reduction Pathways Project



2<sup>nd</sup> Offshore Wind Supply Chain Conference

28-29 February 2012, London, Regents Park Marriott

#### Offshore Wind Progress and Delivery

Adrian Fox Supply Chain Manager 28<sup>th</sup> February 2012



THE CROWN **ESTATE** 





-1% LCOE

## Technology work stream: methodology

+1% change ~ +0.7% LCOE ~ +0.3% LCOE

LCOE = Annualised CAPEX OPEX

**AEP** 

#### 1. Created baselines

140% 120% LCOE relative to 4-11-A-X 100% 80% 60% 40% 20% 0% 4A 4B 4C 4D 6A 6B 6C 8B 6D 8A 8C 8D Turbine ■Wind farm development ■ Support structure Array cables Installation OMS ■Decommissioning



# **Technology work stream: methodology**

#### 2. Considered (many) innovations

|                |   |                                 | Techi                 | nology             | menu                 | :Suppo            | rt Stru          | ıcture       | X-11-X                            | -X to X           | <b>⟨-14-X</b> - | -X                    |                                           |                                                  |                                                 | I                                      |
|----------------|---|---------------------------------|-----------------------|--------------------|----------------------|-------------------|------------------|--------------|-----------------------------------|-------------------|-----------------|-----------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------------------|
|                |   |                                 | Relativ               | e chang            | e in                 |                   |                  |              |                                   |                   |                 |                       |                                           |                                                  |                                                 |                                        |
| Sub-element    | # | Innovation                      | Wind Farm Development | Wind Turbine Rotor | Wind Turbine Nacelle | Support Structure | Array Electrical | Installation | Operation and planned maintenance | Unplanned service | Other OPEX      | Increase in Gross AEP | Relative decrease in other turbine losses | Relative decrease in WF aerodynamic array losses | Relative decrease in WF electrical array losses | Relative decrease in WF unavailability |
| Main structure | 5 | Improvements in monopile design |                       |                    |                      | 3.0%              |                  | 1.0%         |                                   |                   |                 |                       |                                           |                                                  |                                                 |                                        |



# **Technology work stream: methodology**

#### 3. Moderated impact of each innovation





# Aggregated impact of technology innovations

| Element                                     | 4-11-B-X  | 6-20-B-X  | Change | Impact of change in element on LCOE | Impact of innovation in element on LCOE |  |  |
|---------------------------------------------|-----------|-----------|--------|-------------------------------------|-----------------------------------------|--|--|
| Wind Farm Development (£/MW)                | 84,657    | 79,608    | -6.0%  | -0.1%                               | -2.2%                                   |  |  |
| Wind Turbine Rotor (£/MW)                   | 383,181   | 508,029   | 6%     | 3.1%                                | - 5%                                    |  |  |
| Wind Turbine Nacelle (£/MW)                 | 616,306   | 685,149   | 112%   | 1.7%                                | -13 2%                                  |  |  |
| Support Structure (£/MW)                    | 690,399   | 490 120   | ≥9.0%  | -4,004                              | -4.7%                                   |  |  |
| Array Electrical (£/MW)                     | 81,380    | 1, 11     | -21.3% | .4%                                 | -0.5%                                   |  |  |
| Installation (£/MW)                         | 638 925   | 37 4,530  | -47.6% | -7 4%                               | -3.2%                                   |  |  |
| Construction phase insurance (£/MW)         | 40000     | 36,000    | -10.7% | -0.1%                               | N/A                                     |  |  |
| Contingency (£/MW) (Story 1)                | 249, 75   | 216,145   | G      | -0.8%                               | N/A                                     |  |  |
| CAPEX (£/MW)                                | 2,784,222 | 2,412,591 | 12.3%  | -9.1%                               | -26.3%                                  |  |  |
| Operation and planned lain to ace (£/MW/vr) | 26,896    | 2 ,0/8    | -23.5% | -1.3%                               | 4.00/                                   |  |  |
| aplained sirvite (£/ IW-yr)                 | 55, 53    | 31,301    | -43.1% | -4.7%                               | -1.8%                                   |  |  |
| Other (/M) (r)                              | 111       | 1,723     | -18.0% | -0.1%                               |                                         |  |  |
| Annual ransmission charges (£/M¼)           | 6,356     | 51,687    | -8.3%  | -0.9%                               | N/A                                     |  |  |
| Operating phase insurance (£/MW             | 14,000    | 14,000    | 0.0%   | 0.0%                                | N/A                                     |  |  |
| OPEX (£/MW(xr)                              | 154,407   | 119,290   | -22.7% | -7.0%                               | -1.8%                                   |  |  |
| Gross AEA (N.W. MW-yr)                      | 4,520     | 5,140     | 13.7%  | -                                   | N/A                                     |  |  |
| Net AEP (MW./MW/yr)                         | 3,691     | 4,311     | 16.8%  | -14.4%                              | N/A                                     |  |  |
| DECEX (£/MW)                                | 383,295   | 200,718   | -47.6% | -0.6%                               | N/A                                     |  |  |
| Simple LCOE (T only) (£/MWh)                |           |           | -28.6% | -28.6%                              | -28.6%                                  |  |  |

- Chosen as current and most likely technical solution in 2011, 2020 not a product mix
- LCOE figures do not include supply chain levers, variable WACC, and exclude developers contingency so cannot be interpreted as an holistic LCOE impact
- · Still subject to continuing work will change



## Innovation #1: Increase in turbine rating

What: Move from 4MW-class turbines today to 6MW turbines

installed 2016 onwards

**Impact:** Turbine CAPEX + 11%

Wind farm CAPEX -5%

Wind farm OPEX -8%

**AEP + 3%** 

**LCOE -10%** 







# Innovation #2: Improvements in steel space-frame manufacturing

What: Automation of welding & selective standardisation

**Impact:** Support structure CAPEX -11%

Wind farm CAPEX -4%

**LCOE -3%** 





# **Innovation #3: Optimised rotor diameter**

What: At 6MW scale, going to optimum instead of just scaling up

**4MW** today

**Impact:** Turbine CAPEX +13%

Wind farm CAPEX +7%

**OPEX +0.3%** 

**AEP + 7%** 

**LCOE -2%** 





# Top dozen innovations (anticipated impact on LCOE by 2020 for 6MW-scale turbines)...

- 1. Increase in turbine rating
- 2. Improvements in steel space-frame manufacturing
- 3. Optimised rotor diameter
- 4. Introduction of multi-variable optimisation of array layouts
- 5. Improvements in blade aerodynamics
- 6. Improvements in blade pitch control
- 7. Introduction of direct drive drive trains
- 8. Greater level of optimisation during FEED
- 9. Introduction of mid-speed drive trains
- 10. Improvements in AC power take-off system design
- 11. Improvements in range of working conditions for support structure installation
- 12. Improvements in personnel access from transfer vessel to turbine



# And largest potential impact to 2020 & beyond (for range of turbine sizes, ignoring previous)...

- 1. Introduction of float out and sink installation of turbine and support structure (likely CGB)
- 2. Introduction of DC power take-off (inc. impact of DC array cables)
- 3. Introduction of direct-drive superconducting drive trains
- 4. Introduction of suction bucket technology
- 5. Introduction of holistic design of the tower with the rest of support structure
- 6. Introduction of continuously variable transmission drive trains
- 7. Improvements in monopile design standards
- 8. Introduction of whole turbine installation
- 9. Improvements in support structure condition monitoring
- 10. Improvements in AC power take-off system design
- 11. Increase in blade tip speed
- 12. Introduction of inflow wind measurement
- Wind farm life time extension
- ++ Innovations that impact LCOE via reducing risk only



## **Summary**

- 1. Plenty of technology innovations out there
- 2. Progress relies on confidence to invest
- 3. Not all about CAPEX reduction
- 4. Combined with supply chain & finance innovations, much potential for cost reduction
- 5. Crown Estate report will be published next few months
- Detailed and supportive engagement from industry with lots of ambition for growth
- 7. Useful input to inform areas where governments could help catalyse innovation
- 8. Helped us built really good modelling capability
  & understanding of how costs of different technologies are anticipated to evolve

