# Load factors of the future

**Global Offshore Wind 2012** 

David Hÿtch 13 June 2012



# Introduction

# Load factors of the future

#### **Contents**

- BVG Associates
- The Crown Estate, Cost Reduction Pathways project
- Results, load factors varying with time, site and turbine
- Thoughts on cost of energy



# **BVG** Associates

## Making a difference in offshore wind and ocean energy

#### Market analysis & business development

- Supply chain development
- Economic impact assessment
- Support to industrialisation

#### **Technical innovation & engineering analysis**

- Support to investment in technology
- R&D programme management
- Design and engineering services

#### **Project implementation**

- FIT project development (UK only)
- SCADA & condition monitoring
- O&M technical support





# The Crown Estate – Cost Reduction Pathways project

## A complex and in depth modelling task

#### **Modelling iterations**

- 3 Work stream Technology, Supply chain, Finance
- Time periods; financial investment decision (FID) in 2011, 2014, 2017, 2020
- 4 Site Types; covering different water depths, distances from shore and wind speeds
- Turbine sizes; 4MW-Class, 6MW-Class, 8MW-Class, (10MW-Class, not reported)
- Industry stories; slow progression, technology efficiency, supply chain acceleration, rapid growth
- Workshops involving about 50 companies
- 20 Key organisations interviewed from a cross section of industry



# How load factors vary with Site Type

## Load factors increasing from Site Type A to Site Type D



#### Why are load factors increasing?

- Increased wind speed giving higher gross energy yield
- Wake losses reduce with increased wind speed
- Availability is the same for all site types, effects of accessibility are addressed through varying operations, maintenance and service costs.

AMWS = annual mean wind speed



# How load factors vary with turbine size

## Load factors increasing with larger turbines



### Why are load factors increasing?

- All turbines modelled with same specific rating in FID 2011, but...
- Wake losses are reduced due to relatively more turbines on edge of the array.
- Tower height is increased for larger turbines, to maintain minimum blade clearance above sea level, giving a wind speed benefit.



# How load factors vary over time

## **Load factors increasing to FID 2020**



#### Why are load factors increasing?

### Wind farm development

Optimised site layouts

#### **Turbine**

- Optimised rotor diameter and improved blade aerodynamics
- More reliable turbines

## Balance of plant

 Reduction of electrical losses through increased voltage and DC cables

# Operations, maintenance and service

- Use of condition monitoring
- Improved turbine access



# How load factors vary over time

## Increase in load factor dominated by increased turbine output



#### **Discussion**

- Overall increase in load factor from 43.2 per cent to 48.9 per cent between FID 2011 and 2020.
- Change in load factor equivalent to 13 per cent increase in energy.
- Increase in turbine output accounts for more than an 11 per cent increase in load factor.
- Increase in availability
  driven equally by increase
  in turbine reliability as
  improvements in
  operations, maintenance
  and service methods.



# How load factors vary over time

## Increase in load factor gained mainly through improvements in turbine technology



#### **Discussion**

- Majority of load factor improvement coming from developments in turbine technology.
- More than 60 per cent of this benefit comes from optimisation of rotor diameter to minimise cost of energy.





# **Cost of energy**

# Increased load factor allows increased CAPEX while cost of energy reduces

#### **Turbine comparison**

<u>Turbine A (4MW-120m)</u> <u>Turbine B (6MW-158m)</u>

Turbine CAPEX = 100% Turbine CAPEX = 124%

Wind farm CAPEX = 100% Wind farm CAPEX = 103%

OPEX = 100% OPEX = 91%

Load factor = 42.1% Load factor = 46.2%

Cost of energy = 100% Cost of energy = 90%

#### **Discussion**

- Turbine B significantly more expensive (per megawatt) due to larger size and relatively larger rotor.
- CAPEX savings
  elsewhere due to fewer
  turbines (on fixed
  capacity wind farm).
- OPEX savings also from fewer turbines.
- Cost of energy reduction driven by higher load factor; don't just look for lowest turbine or wind farm CAPEX solution.



# **Conclusions**

- Load factors set to increase toward 2020
- Most improvement in load factor from increasing turbine output
- Developments in turbine technology contributing the most to increasing load factors
- Cost of energy comparisons more important than load factor or CAPEX

# Thank you

**Global Offshore Wind 2012** 

David Hÿtch 13 June 2012

