Organized by
WIND
ENERGY

update

19th - 20th February 2013 | RADISSON BLU HOTEL | Hamburg, Germany

Implementing a reliability centred approach during wind turbine development

Hamburg, 20 February 2013

Bruce Valpy

Reliability centred approach during wind turbine development

Introduction

Contents

- Why focus on reliability
 - Cost of energy
 - Health and safety
- Reliability centred approach
 - 10 steps to success

BVG Associates

- Market analysis and business development
 - Supply chain development
 - Economic impact assessment
 - · Support to industrialisation

- Technical innovation & engineering analysis
 - Support to investment in technology
 - R&D programme management
 - Design and engineering services

- · Project implementation
 - FIT project development (UK only)
 - SCADA & condition monitoring
 - O&M technical support

Cost of energy

Health warning

CAPEX has been going up, not down

- · Need to understand the past before talking about cost reduction in the future
- Between 2003 and 2010, CAPEX increased (blue bars)
- · Much can be explained by change of site conditions
- · Much of the rest can be explained by market conditions
- Due to increases in site wind speeds and use of larger turbines, LCOE decreased during period despite CAPEX increase
- CAPEX stabilised 2010-12

Cost reduction pathways study

Overview

Context

- 2011 UK Government Energy white paper:
 - Central scenario 13GW by 2020
 - Minded to support to 18GW if cost of energy reduced - target £100/MWh

Supply chain, finance and technology work streams

Published summer 2012

Cost reduction pathways study: results

- Given right external conditions, industry can meet target:
 - Confidence in market size to beyond 2020
 - Smooth and timely transition under EMR
 - Planning consent timelines reliably met
 - Clear and predictable offshore grid regulatory framework
 - Facilitation of new technology introduction
- To deliver, industry also needs to work together:
 - Best practice, standardisation, risk management, accessing new finance

Methodology in numbers: technol

2 - Technology

FID 2011

----1 - Slow Progression

----3 - Supply Chain Efficiency

160

(E/MWh) 140

Levelised Cost of Energy

Technology

k stream

m site,

The case for focus on wind turbine reliability

The case for focus on wind turbine reliability

The case for focus on wind turbine reliability

The case for focus on wind turbine reliability

If...

- If turbines were 100% reliable, so just needed visits for planned maintenance...
- OPEX down 68%
- Lifetime expenditure down 27%
- Lost energy down by 90%
- LCOE down by 30%
- Visits down 70%
- Accidents down by >80%
- Increased certainty would increase pool of investors and hence decrease cost of capital

The case for focus on wind turbine reliability

Due diligence - experience

- ✓ Lots good
- Few components / systems tested thoroughly
- Poor justification for component survival (beyond calculations)
- Main component exchange not designed in / tested
- Not possible to easily replace wear parts
- Poor / incomplete manuals and troubleshooting guides
- Track record of unreliable systems / repeat faults
- Training strategies not implemented
- Site work records incomplete
- SCADA report errors
- Significant inefficiencies on site
- √ Type Certificate (does not consider the above)

Important ingredients of reliability centred approach

2. 'Rules of thumb'

- A 'small boat' intervention costs average €15,000
- Worth spending €1k CAPEX if can save €X OPEX per year
- Downtime costs average
 €8k/day (€20k for windy day)

3. Component reliability reviews

- FMEA hard to do well, balanced across range of components
- Logic and probalistic FTA
- Six sigma

Project ID 000X					Facilitator BAV				Participants XX, BAV	
ROW	PART	PART FUNCTION	POTENTIAL FAILURE MODE	POTENTIAL EFFECTS OF FAILURE (assuming failure detection OK)	FAILURE DETECTION ON TURBINE	SEV	POTENTIAL CAUSE(S) OF FAILURE	occ	DESIG	
A1	Blade Bearing	ROTATE EASILY	STOPS ROTATING Instant - seize	one blade Turbine shut down by control system using generator	Pitch control error and pitch asymetry errorwhen pitch movement demanded.Codes [5671-5674 and 5723-5724]	8	Extreme overload (large collision); fracture; undetected roller / raceway fatigue failure;	2	Turbine loa detailed sp calcs (ultin	
A2			STOPS PITCHING gradual - notchy	teeth, pitch gearbox & motor &	Prich position [L1] & regular movements [11]: also motor current [L11]	6	Extreme or fatigue overload; poor lubrication	7	Little supp similar app	
A3			STOPS PITCHING gradual - increased friction	teeth, pitch gearbox & motor &	Motor current checks during slack water (t2, T1); also motor temperature (L2)	6	Extreme or fatigue overload; poor lubrication	7	Little supp similar app interpret fa	
A4		TRANSFER predicted LOADS	TRANSFER TOO HIGH LOADS to bolts	Bolt FAILURE	Service inspection	5	Higher prying loads than predicted	7	Turbine loa calculation	

Important ingredients of reliability centred approach

10 Steps to success Fix first time approach Useful, accurate data Feedback from site Joined up SCADA/ control/CM Demonstration of maintenance procedures Test and verification Component reliability reviews 'Rules of thumb' Reliability and OPEX budgets (and model)

Reliability centred approach during wind turbine development

