Condition monitoring of onshore wind turbines: independent thinking
BVG Associates

Market analysis & business development
- Supply chain development
- Economic impact assessment
- Support to industrialisation

Technical innovation & engineering analysis
- Support to investment in technology
- R&D programme management
- Design and engineering services

Project implementation
- FIT project development (UK only)
- SCADA & condition monitoring
- O&M technical support

Technical education
Scope

- Recent trends
- Market situation
- Purpose and cost
- What it’s good and not good at
- Typical business case
- Another way
- The ideal
Condition monitoring: recent trends

1. Market for condition monitoring systems has not grown as fast as anticipated 5 years ago
2. All large wind turbine manufacturers are offering independent ‘add on’ systems, especially on multi-MW turbines
3. WTM and others bringing experience from other sectors
4. Technical trend towards:
 - Use of more types of sensor
 - Monitoring more components
 - Analysing data from many turbines, centrally
 - Use of more wind turbine design understanding

© BVG Associates 2011
Condition monitoring: market situation

<table>
<thead>
<tr>
<th>Company</th>
<th>System</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Pressure</th>
<th>Acoustic emission (oil)</th>
<th>Electrical</th>
<th>Strain</th>
<th>Accelerometer</th>
<th>Displacement</th>
<th>Tachometer</th>
<th>Video</th>
<th>Rotor</th>
<th>Drivetrain</th>
<th>Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areva/01db-Metravib Drivetrain</td>
<td>OneProD</td>
<td>✔</td>
</tr>
<tr>
<td>Bently Nevada (GE)</td>
<td>WT-CMS Adapt.wind</td>
<td>✔</td>
</tr>
<tr>
<td>Beran Instruments</td>
<td>PlantProtech</td>
<td>✔</td>
</tr>
<tr>
<td>Brüel & Kjæer Vibro</td>
<td>WTAS - Type 3651</td>
<td>✔</td>
</tr>
<tr>
<td>Eickhoff</td>
<td>E-GOMS</td>
<td>✔</td>
</tr>
<tr>
<td>Emerson Process Management</td>
<td>epro MMS</td>
<td>✔</td>
</tr>
<tr>
<td>FAG</td>
<td>FAG WiPro</td>
<td>✔</td>
</tr>
<tr>
<td>Gamesa</td>
<td>SMP-8C</td>
<td>✔</td>
</tr>
<tr>
<td>Global Maintenance Technologies</td>
<td>E-Sentry System</td>
<td>✔</td>
</tr>
<tr>
<td>Gram & Juhl</td>
<td>TCM®</td>
<td>✔</td>
</tr>
<tr>
<td>Holroyd Instruments</td>
<td>AE Systems</td>
<td>✔</td>
</tr>
<tr>
<td>IGUS ITS</td>
<td>BLADEcontrol®</td>
<td>✔</td>
</tr>
<tr>
<td>Insensys</td>
<td>RMS</td>
<td>✔</td>
</tr>
<tr>
<td>Prüfteknik Condition Monitoring</td>
<td>VibroWeb XP</td>
<td>✔</td>
</tr>
<tr>
<td>Rovsing Dynamics</td>
<td>Winery CDS</td>
<td>✔</td>
</tr>
<tr>
<td>Siemens Wind Power AS</td>
<td>FLENDER CM</td>
<td>✔</td>
</tr>
<tr>
<td>SKF</td>
<td>WindCon</td>
<td>✔</td>
</tr>
<tr>
<td>Vatron</td>
<td>DriveMon Wind</td>
<td>✔</td>
</tr>
<tr>
<td>WindSL</td>
<td>WT-HUMS</td>
<td>✔</td>
</tr>
<tr>
<td>μ-SEN</td>
<td>Ω-Guard®</td>
<td>✔</td>
</tr>
</tbody>
</table>

(excludes single-sensor type systems based on accelerometers AE, US, oil cleanliness sensing; also analytics only suppliers)
Condition monitoring: purpose & cost

Use
• Fault detection = finding problem (after failure = needs repair)
• Diagnostic = finding cause of problem
• Prognostic = predicting future failure

To
• Enable service crew to address problem:
 • Before failure (ie. minimising maintenance cost & lost revenue)
 • At planned time (eg low wind)
 • On their first visit
• Understand root cause of problem (may feed back to design)
• Minimise engineer input looking at data from multiple sites

Cost
• WT controller & service crew: nothing extra
• CMS: €5-10k + €1-2k/yr
Condition monitoring: what it’s good & not good at

✅ Bearing damage
 • Detect and prognose
 • Gearbox (especially HS stage), main bearing, generator bearings

✅ Gear tooth damage
 • Detect and prognose

✅ Abnormal operation
 • Gross yaw and pitch system defects

❌ Adding up fatigue life from day 1 & predicting date of failure
 (and are unlikely ever to do so)

❌ Diagnosing root cause
 (yet)
Condition monitoring: typical business case

- Pay €X + €Y/year
- Avoid lost revenue of €Z
- Avoid large component replacement cost of €A
 - eg set of bearings instead of complete gearbox
 - 1 service van instead of 4 vans and a crane etc.

- CMS supplier examples always look great
 - Detect the problem
 - Generic reliability data often ‘old’ and generic

- Customers are enjoying benefits
- Payback average 2-8 years
 (looks best for larger turbines & offshore)
Condition Monitoring: another way

- Think differently: combine with condition-based maintenance = focus on the components that need it

- Challenge: Needs more technology understanding = input from WTM or ?
Condition monitoring: the ideal

1. Turbine control system
 - Multiple systems
 - SCADA (inc. service records)

2. Rotor
 - Multiple components
 - Drive
 - Tower

3. Multiple turbines

4. Turbine Design Knowledge

© BVG Associates 2011