

Putting reliability at the heart of the wind turbine development process: lowering lifetime cost

Birmingham, 6 November 2013
Bruce Valpy

Turbine reliability: greater certainty and lower lifetime cost

Introduction

Agenda

- · Why focus on reliability
 - · Cost of energy
 - Health and safety
- Reliability focussed approach
 - 10 steps to success

BVG Associates

- Market analysis and business development
 - Supply chain development
 - Economic impact assessment
 - · Support to industrialisation

- Technical innovation & engineering analysis
 - Support to investment in technology
 - R&D programme management
 - Design and engineering services

- · Project implementation
 - FIT project development (UK only)
 - SCADA & condition monitoring
 - O&M technical support

Cost of energy

Health warning

Cost reduction pathways study

Overview

Context

- 2011 UK Government Energy white paper:
 - · Central scenario 13GW by 2020
 - Minded to support to 18GW if cost of energy reduced – target £100/MWh

Supply chain, finance and technology work streams

Published summer 2012

Methodology

4 Dimensional turbine sizes.

BVGassociates

- 6 Industry day-l
- 20 Deep industry in
- 125 Industry individua
- 215 Pages available f

Cost reduction pathways study: results

- Given right external conditions, industry can meet target:
 - Confidence in market size to beyond 2020
 - Smooth and timely transition under EMR
 - Planning consent timelines reliably met
 - Clear and predictable offshore grid regulatory framework
 - Facilitation of new technology introduction
- To deliver, industry also needs to work together:
 - Best practice, standardisation, risk management, accessing new finance

Why focus on reliability

The case for focus on wind turbine reliability

Why focus on reliability

The case for focus on wind turbine reliability

If...

- If turbines were 100% reliable, so just needed visits for planned maintenance...
- Wind farm operations cost down by 68%
- OPEX down by 34%
- Lifetime expenditure down by 12%
- Lost energy down by 90%
- LCOE down by almost by 15%
- Turbine visits down by 70%
- Health and safety incidents down 80%
- Increased confidence in new products increases competition in the supply of turbines
- Increased revenue certainty increases pool of investors and decreases cost of capital

Why focus on reliability

The case for focus on wind turbine reliability

Due diligence - experience

- ✓ Lots good
- Few components / systems tested thoroughly
- Poor justification for component survival (beyond calculations)
- Main component exchange not designed in / tested
- Not possible to easily replace wear parts
- Poor / incomplete manuals and troubleshooting guides
- Track record of unreliable systems / repeat faults
- Training strategies not implemented
- Site work records incomplete
- SCADA report errors
- Significant inefficiencies on site
- √ Type Certificate (does not consider the above)

Important ingredients of a reliability focussed approach

2 'Rules of thumb'

- A 'small boat' intervention costs average €15,000
- Worth spending €1k CAPEX if can save €X OPEX per year
- Downtime costs average
 €8k/day (€20k for windy day)

3 Component reliability reviews

- FMEA hard to do well, balanced across range of components
- Logic and probalistic FTA
- Six sigma

Project ID 0000					Facilitator BAV				Participants XX, BAV	
ROW	PART	PART FUNCTION	POTENTIAL FAILURE MODE	POTENTIAL EFFECTS OF FAILURE (assuming failure detection OK)	FAILURE DETECTION ON TURBINE	SEV	POTENTIAL CAUSE(S) OF FAILURE	occ	DESIG	
A1	Blade Bearing	ROTATE EASILY	STOPS ROTATING Instant - seize	one blade Turbine shut down by control system using generator	Pitch control error and pitch asymetry errorwhen pitch movement demanded.Codes [5671-5674 and 5723-5724]	8	Extreme overload (large collision); fracture; undetected roller / raceway fatigue failure;	2	Turbine los detailed sp calcs (ultir	
A2			STOPS PITCHING gradual - notchy	teeth, pitch gearbox & motor &	Prich position [L1] & regular movements [11]: also motor current [L11]	6	Extreme or fatigue overload; poor lubrication	7	Little supp similar app	
A3			STOPS PITCHING gradual - increased friction	teeth, pitch gearbox & motor &	Motor current checks during slack water (t2, T1); also motor temperature (L2)	6	Extreme or fatigue overload; poor lubrication	7	Little supp similar app interpret fa	
A4		TRANSFER predicted LOADS	TRANSFER TOO HIGH LOADS to bolts	Bolt FAILURE	Service inspection	5	Higher prying loads than predicted	7	Turbine loa calculation	

Important ingredients of a reliability focussed approach

10 Steps to success Fix first time approach Useful, accurate data Feedback from site Joined up SCADA/ control/CM Demonstration of maintenance procedures Test and verification Component reliability reviews 'Rules of thumb' Reliability and OPEX budgets (and model)

Important ingredients of a reliability focussed approach

Let's talk...

Want to challenge?

Want to discuss as a turbine manufacturer?

As an asset owner?

Call us on +44 1793752308 or email reliability@bvgassociates.co.uk

Wot no Reliability Certification? Watch this space

